3d modeling

Machine learning-based 3D modeling and volumetry of the human posterior vitreous cavity from optical coherence tomographic images

  • Hogan MJ, Alvarado JA, Weddell JE. Glassy. in Human eye histology (WB Saunders Company, 1971)

  • Fine BS, Yanoff M. The vitreous body. in Ocular histology. 2nd ed. (Harper & Row, 1979)

  • Sakamoto, T. & Ishibashi, T. Hyalocytes: Essential vitreous cavity cells in vitreoretinal pathophysiology?. Retina 31(2), 222–228 (2011).

    CAS Google Scholar Article

  • Sebag, J. Vitreous and degrading myodesopsia of vision. Program. Retin. Eye Res. 79100847 (2020).

    CAS Google Scholar Article

  • Foos, RY & Wheeler, NC Vitreoretinal junction. Synchysis senilis and posterior vitreous detachment. Ophthalmology 89(12), 1502-1512 (1982).

    CAS Google Scholar Article

  • Bishop, PN, Holmes, DF, Kadler, KE, McLeod, D. & Bos, KJ Age-related changes on the surface of vitreous collagen fibrils. Invest. Ophthalmol. Screw. Science. 45(4), 1041-1046 (2004).

    Google Scholar article

  • Elmali A et al. Radiation therapy-induced alterations in the vitreous humor: a potential new critical structure. Exp. Eye Res. (2021) (epub ahead of print).

  • Worse, JG Cisternal systems of the fully developed vitreous body in young adults. Trans. Ophthalmol. Soc. UK 97(4), 550–554 (1977).

    CAS PubMed Google Scholar

  • Mojana, F. et al. Observations by optical coherence tomography in the spectral domain combined with simultaneous scanning laser ophthalmoscopy: Imaging of the vitreous. A m. J. Ophthalmol. 149(4), 641–650 (2010).

    Google Scholar article

  • Itakura, H., Kishi, S., Li, D. & Akiyama, H. Observing the posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest. Ophthalmol. Screw. Science. 54(5), 3102–3107 (2013).

    Google Scholar article

  • Liu, JJ et al. Enhanced vitreous imaging in healthy eyes using swept-source optical coherence tomography. PLOS ONE 9(7), e102950 (2014).

    Article on Google Scholar Ads

  • Schaal, KB, Pang, CE, Pozzoni, MC & Engelbert, M. The shape of the premacular bursa revealed in vivo by swept-source optical coherence tomography. Ophthalmology 121(5), 1020-1028 (2014).

    Google Scholar article

  • Pang, CE, Schaal, KB, and Engelbert, M. Association of prevascular vitreous fissures and cisterns with vitreous degeneration assessed by swept-source optical coherence tomography. Retina 35(9), 1875-1882 (2015).

    Google Scholar article

  • Li, D., Kishi, S., Itakura, H., Ikeda, F. & Akiyama, H. Posterior precortical vitreous pockets and connecting channels in children in swept-source optical coherence tomography. Invest. Ophthalmol. Screw. Science. 55(4), 2412–2416 (2014).

    Google Scholar article

  • She, X., Ye, X., Chen, R., Pan, D. & Shen, L. Characteristics of posterior precortical vitreous pockets and Cloquet’s canal in myopic patients by optical coherence tomography. Invest. Ophthalmol. Screw. Science. 60(14), 4882–4888 (2019).

    Google Scholar article

  • Weigert, M. et al. Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy. Nat. Methods 15(12), 1090–1097 (2018).

    CAS Google Scholar Article

  • Shad, R. et al. Predicting postoperative right ventricular failure using video-based deep learning. Nat. Common. 12(1), 5192 (2021).

    ADS MathSciNet CAS Google Scholar Article

  • De Fauw, J. et al. Clinically applicable in-depth learning for the diagnosis and referral of retinal diseases. Nat. Med. 24(9), 1342–1350 (2018).

    Google Scholar article

  • Yim, J. et al. Predict conversion to wet age-related macular degeneration using deep learning. Nat. Med. 26(6), 892–899 (2020).

    CAS Google Scholar Article

  • Varadarajan, AV et al. Predict degrees of diabetic macular edema derived from optical coherence tomography from fundus photographs using deep learning. Nat. Common. 11(1), 130 (2020).

    ADS CAS Article Google Scholar

  • Zhang, G. et al. Clinically relevant deep learning for the detection and quantification of geographic atrophy from optical coherence tomography: model development and external validation study. Lancet cipher. Health 3(10), e665–e675 (2021).

    Google Scholar article

  • Hormel, TT et al. Artificial intelligence in OCT angiography. Program. Retin. Eye Res. 85100965 (2021).

    Google Scholar article

  • Christopher, Mr. et al. Deep learning estimation of 10–2 and 24–2 visual field metrics based on OCT macula thickness maps. Ophthalmology 128(11), 1534-1548 (2021).

    Google Scholar article

  • Ohno-Matsui, K., Takahashi, H., Mao, Z., and Nakao, N. Determination of posterior vitreous structure by analysis of images obtained by AI-based 3D segmentation and ultra-field optical coherence tomography wide. Br. J. Ophthalmol. (2021) (epub ahead of print).

  • Mao, Z. et al. Deep learning-based noise reduction method for automatic 3D segmentation of the anterior part of the lamina cribrosa in volumetric optical coherence tomography scans. Biomedical. Opt. Exp. ten(11), 5832–5851 (2019).

    Google Scholar article

  • van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 19(2), e453 (2014).

    Google Scholar article

  • Lewiner, T., Lopes, H., Vieira, AW & Tavares, G. Efficient implementation of cubic walk cases with topological guarantees. J. Chart. Tools 8(2), 1–15 (2003).

    Google Scholar article

  • Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. in Medical Imaging and Computer Assisted Intervention (eds. Navab, N., Hornegger, J., Wells, W. & Frangi, A.). 234–241. (Springer, 2015).

  • Devalla, Sask. et al. DRUNET: An expanded residual U-Net deep learning network for segmenting optic nerve head tissue in optical coherence tomography images. Biomedical. Opt. Exp. 9(7), 3244–3265 (2018).

    Google Scholar article

  • Roy, AG et al. ReLayNet: Retinal layer and macular optical coherence tomography fluid segmentation using fully convolutional networks. Biomedical. Opt. Exp. 8(8), 3627–3642 (2017).

    Google Scholar article

  • Tsukahara, M., Mori, K., Gehlbach, PL & Mori, K. Posterior vitreous detachment observed by wide-angle OCT imaging. Ophthalmology 125(9), 1372–1383 (2018).

    Google Scholar article

  • Takahashi, H. et al. Posterior vitreous detachment and paravascular retinoschisis in young very myopic patients detected by ultra-widefield OCT. Science. representing 11(1), 17330 (2021).

    ADS CAS Article Google Scholar

  • Ohno-Matsui, K., Mao, Z., and Takahashi, H. Posterior vitreous visualization by ultra-widefield, AI-based 3D OCT imaging. in Oral presentation at: American Academy of Ophthalmology Annual Meeting Retina Subspecialty Day; November 2021; Online seminar (2021).

  • Gale, J. & Ikuno, Y. Myopic vitreopathy. In Vitreous—Health and Sickness (ed. Sebag, J.) 113–130 (Springer, 2014).

    Google Scholar Chapter

  • Yokoi, T. et al. Development of a premacular vitreous pocket. JAMA Ophthalmol. 131(8), 1095-1096 (2013).

    Google Scholar article

  • Isensee, F., Jaeger, PF, Kohl, SAA, Petersen, J. & Maier-Hein, KH nnU-Net: A self-configuration method for biomedical image segmentation based on deep learning. Nat. Methods 18(2), 203-211 (2021).

    CAS Google Scholar Article

  • Qamar, S., Jin, H., Zheng, R., Ahmad, P. & Usama, M. A variant of 3D-UNet for infant brain segmentation. Future. Gen. Calculation. System 108(7), 613–623 (2020).

    Google Scholar article